报告题目:On the number of simple modules
报告人:惠昌常
报告人单位:首都师范大学
时间:2023年3月31日(周五),上午10:30-11:30
地点:教2-225(2)
主办单位:yl60000永利官网
报告内容: In the representation theory of algebras and groups, the number
of non-isomorphic simple modules of an algebra is an important invariant. A famous conjecture related to this number is the Auslander-Reiten/Auslander-Alperin conjecture: Two stably equivalent algebras should have the same number of non-isomorphic, non-projective simple modules. This conjecture was proposed at the beginning of 1970's and is still open up to date. In this talk, we will show that the conjecture holds true for a class of centralizer matrix algebras over algebraically closed field. Moreover, we will mention another 3 new invariants of stable equivalences of Artin algebras.
报告人简介:
惠昌常,首都师范大学特聘教授,博士生导师,长江学者特聘教授,博士毕业于联邦德国Bielefeld大学;曾获教育部科技进步奖、德国洪堡“年轻杰出学者洪堡奖”;在代数表示论、同调代数、导出范畴、胞腔代数等学科取得了出色研究成果,在Adv.Math、 Crell Journal、Math.Ann、Proc.Lond.Math.Soc、Comm.Math.Phys、Sci.China.Math等国际数学刊物发表论文90多篇,多次在国际代数学术会议作大会报告、主持和参加国家自然科学基金重点项目;任《J. Algebra》、《Archiv der Math.》等国际学术杂志编委。